Imperial College Healthcare

Polyuria and Polydipsia Syndrome: is it Diabetes Insipidus?

Prof Tricia Tan Consultant in Metabolic Medicine & Endocrinology Clinical Chemistry

Objectives for talk

- 1. to understand the pathophysiology of DI
- 2. to understand the differential diagnosis
- 3. to understand how we can differentiate between the different causes
- 4. to understand treatment strategies

Definition of Polyuria

- · A urine output exceeding
 - 3 L/day in adults
 - 2 L/m² body surface area/day in children.
- · Must be differentiated from
 - Frequency of urination
 - Nocturia
 - These are not associated with an increase in the total urine output.

Basic First Line Investigations

- U&E, Ca, Glucose exclude diabetes mellitus!
- Urinalysis for glucose and S.G.
 - S.G. <1.005 is suspicious
- Paired serum and urine osmolalities
 - Normal serum osmo = 275-295 mOsm/kg
 - Urine osmo ranges from 100 to 1200 mOsm/kg
 - Baseline serum osmo of >295 with urine osmo
 200 is diagnostic of DI
- Bladder diary

Osmolality

- Concentration of osmotically active particles in a solution (expressed per kg solvent)
- Measure using freezing point depression (proportional to osmolality)

Temp 0°C

Bladder diary

Time	In	Out	'Wet'	Urgency rating
0700		300 ml	~~	A = felt no need to void but did so for other reasons
0800	Tea 1 cup			B = could postpone voiding as long as necessary without fear of 'wetting'
0900				C = could postpone voiding for a short time without fear of 'wetting'
1000		300 ml		D = could not postpone voiding and had to rush to void in toilet
1100	Water 1 cup			E = leaked before getting to toilet
0400		200 ml		
0500				
0600				

2

AVP controls aquaporin recruitment in

When polyuria proven...

- Exclude uncontrolled diabetes mellitus
- Three major causes of polyuria in the outpatient setting:
 - primary polydipsia
 - central diabetes insipidus (DI)
 - nephrogenic DI

Primary polydipsia

- A primary increase in water intake.
- Most often seen in
 - middle-aged women
 - patients with psychiatric illnesses
 - including those taking a phenothiazine which can lead to the sensation of a dry mouth
- Primary polydipsia can also be induced by
 - hypothalamic lesions that directly affect the thirst center, e.g. sarcoidosis
 - Xerostomia (lack of saliva) leading to excessive drinking

Cranial DI

- Deficient secretion of AVP from posterior pituitary
- Often idiopathic
 - possibly due to autoimmune injury to the ADHproducing cells
- Trauma (head injury)
- Pituitary surgery
- Hypoxic or ischaemic encephalopathy
- Familial: mutations in pro-AVP gene

Nephrogenic DI

- ➢ High AVP but kidneys insensitive to this
- Familial
 - Mutations in V2 receptor or aquaporin
- Li toxicity
- Hypercalcaemia
- Hypokalaemia
- Renal disease (e.g. CKD)
- Pregnancy placental vasopressinase

Case 1

- 40 year old lady
- Bipolar disorder on Lithium carbonate
- Polyuria and polydipsia (up to 10 litres a day)
- Complains of a dry mouth all the time
- What are the possible diagnoses?

Case 1

- Nephrogenic DI
 - Due to chronic Li treatment
 - Li-induced hyperparathyroidism and hyperCa?
- Primary polydipsia
 - Due to underlying psychiatric disorder?
- Cranial DI less likely

Tests

- Baseline
 - Na 145, K 4.5, Ca normal, glucose normal
 - Li undetectable
- Went on to water deprivation test

What is a water deprivation test?

- First stage
 - Serial measurements of serum and urine osmo under conditions of water deprivation
 - **Differentiates** primary polydipsia (urine osmo \uparrow) from DI (urine osmo fails to \uparrow beyond a limit)
- Second stage
 - If DI proven, give DDAVP
 - Differentiates cranial DI (urine osmo 个 to DDAVP) vs nephrogenic DI (urine osmo does not respond)
- Needs to be done under supervision for safety

Interpretation of water deprivation

Pre-test Water depriv	Water deprived (8h)		Given DDAVP	
Serum Urine Serum	Urine	Serum	Urine	
295 460 305	605	306	598	

- Pre-test
 - Serum top end of normal
 - Urine can't comment
- Water deprived
- Serum too high
- Urine is inappropriately low (would expect >750)
- DDAVP given
 - Serum is still too high
 Urine is still not concentrated enough
- Nephrogenic DI

Nephrogenic DI due to Lithium

- 20-40% taking Li have 个urine vol (2-3 L/d)
- 12% of patients have frank polyuria (>3 L/d)
- Direct inhibitory effect of Li on aquaporin expression and recruitment
- Chronic effect: Li-induced interstitial nephritis can contribute to DI
- Usually reversible with discontinuation, but can persist long-term
- In this case discontinuation led to settling of DI

Treatment of Nephrogenic DI

- IV fluids (if patient very hypovolaemic)
 - Need to use fluid of similar osmo to urine otherwise instability of [Na] may ensue
- Low protein/Na diet
 - \downarrow amount of solute that needs to be excreted and therefore \downarrow urine volume needed
- Thiazide diuretics
 - Causes mild volume depletion
 - \uparrow resorption of Na and water in proximal tubule

Treatment of Nephrogenic DI

- NSAIDs (e.g. indomethacin)
 - Prostaglandins antagonise effect of AVP
 - Therefore inhibiting production of PG causes increased water reabsorption
- High dose DDAVP
 - Most patients with non-familial nephrogenic DI have partial defects that may respond to DDAVP

Case 2

- 25 year old woman
- "Always drunk lots and passed lots"
- No other relevant past history
- Baselines
 - Na 136, K 3.6, Ca and Glucose normal
 - Serum osmo 277, urine osmo 100

Interpretation of water deprivation

Pre-	test	Water dep	Water deprived (8h)		
Serum	Urine	Serum	Urine		
275	100	280	850		

• Pre-test

- Serum low end of normal
- Urine is dilute
- · Water deprived
- Serum rises to normal range
- Urine rises to >750
- Note would expect Urine osmo to rise to >1000 in a young person
- Chronic polydipsia causes 'washout' of medullary concentration and therefore some reduction in ability to concentrate urine

> Primary polydipsia

Treatment of primary polydipsia

- Fluid restriction
- Consider artificial saliva if problem driven by dryness of buccal mucosa (e.g. with xerostomia)

Case 3

- 24 y.o. man, RTA last year, polyuric
- Baselines
 - Na 145, K 4.0, Ca normal, glucose normal
- Went on to water deprivation test

Case 3 intepretation

Pre-test		Water dep	Water deprived (8h)		Given DDAVP	
Serum	Urine	Serum	Urine	Serum	Urine	
295	300	302	295	285	1154	

- Baseline
 - Serum top end of normal
 - Urine not interpretable
- Water deprived
 - Serum clearly high
 - Urine inappropriately dilute (should be >750 at least or even >1000 in young person)
- DDAVP given
 - Sharp rise in urine osmo seen
 - Recovery of serum osmo to normal

Cranial DI due to head injury

- Acutely after head injury in 1 in 5 patients
- Seen chronically in 1 in 12 patients
- Associated with other pituitary problems or can be isolated
- DDAVP Rx:

Compared and Compa

Other causes of cranial DI

- Pituitary tumours
 - Not common in pituitary adenoma
 - More common with other types of tumours (e.g. craniopharyngioma, metastasis)
- Pituitary surgery
- Infiltrative disease
 - Sarcoidosis, histiocytosis X
- Infection
 - Meningitis, encephalitis
- Hereditary (rare)

How to monitor a Patient on DDAVP

- DDAVP has different doses depending or preparation, e.g.
 - 00
 - Nasal spray: 10-20 μg (1-2 sprays) OD-TDS

- Tablets: 100 μg nocte to 200 μg TDS

- Melts: 60, 120, 240 μg OD-TDS
- Subcutaneous injection: 0.5-1 μg OD-BD
- Different durations of action
 - Tablets ~4-6 h
 - Nasal Spray ~8 h
 - Injection ~12 h

DDAVP is a vital drug

Patients must receive steady supplies of DDAVP

Patients are entitled to exemption from prescription charges

How to monitor a Patient on DDAVP

- Two key parameters for monitoring:
 - Body weight (reflects body water)
 - Na⁺
- Warning signs:
 - Tiredness
 - Confusion
 - Ataxia
 - Nausea and vomiting
 - Headaches
 - Acute change of >2 kg from baseline body weight
- CHECK U&E URGENTLY

Some common questions

- Blockage of nasal passages in patients using spray (e.g. URTI)
 - Consider Rx tablets
- Pregnancy
 - May require increased dose: placental vasopressinase breaks down AVP/DDAVP
- Travelling
 - Patients may require a letter for airport security to carry medication through screening
 - Patients should take doses according to local time