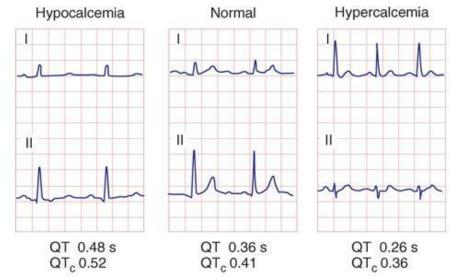
Hyper and hypocalcaemia

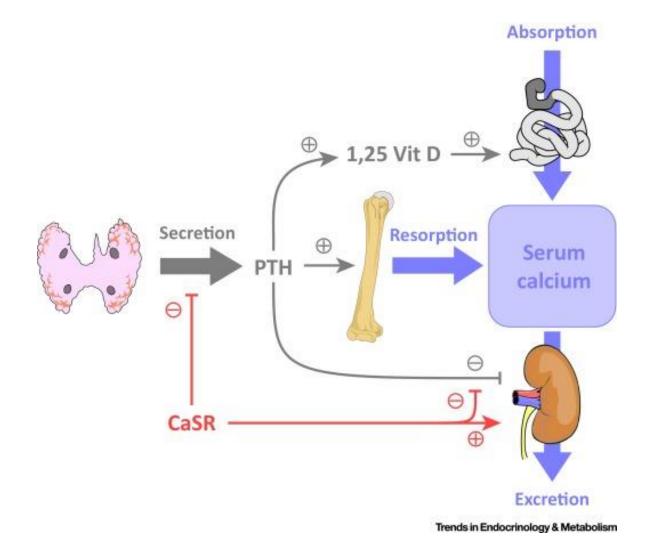
Prof Tricia Tan

Learning Objectives

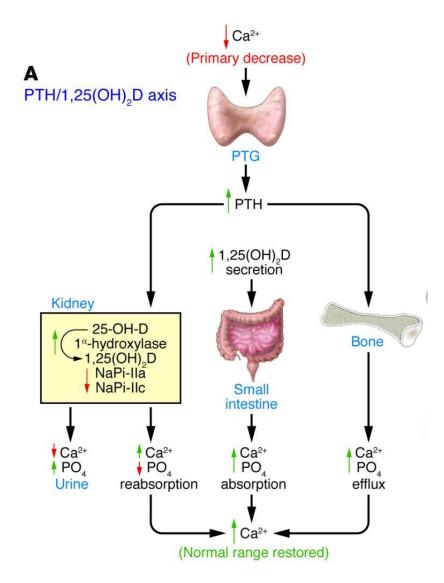

- Basic physiology of Ca regulation
- Case presentations
- Take home messages

Calcium

- Total body calcium content ~1300g
 - 99% in bone
 - 1% intracellular
 - 0.1% extracellular
- Ca in blood :
 - 40% protein bound
 - 60% Ultrafilterable
 - 10% complexed to anions
 - 50% Ionised Ca


What is Calcium for?

- Structural component of bone
- Vitally required for muscle function, especially cardiac:



• Cellular functions (exocytosis etc.)

Calcium is regulated

Response to low Ca levels

- PT glands secrete PTH
- 个Ca absorption in the intestine
 - Via 个1,25 vitamin D
- 个Ca reabsorption from kidneys
 - Via 个1,25 vitamin D
 - Direct effect on Na/phosphate cotransporters → ↓Pi reabsorption

Metabolism of Vitamin D

Case 1

- 34 year old lady, 12 weeks pregnant
- Vomiting
- Routine bloods
 - Thyroid function normal
 - Corrected Calcium 3.05 mmol/L

> What do you need to do?

Symptoms of hypercalcaemia

- Often asymptomatic
- 'Bones' bone pain
- 'Stones' kidney stones
- 'Moans' depression and confusion
- 'Groans' abdominal pain? Pancreatitis?

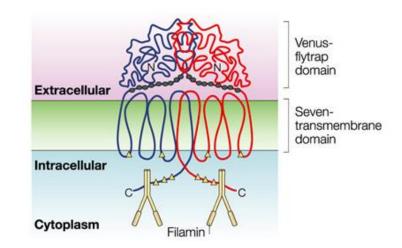
Triaging Hypercalcaemia

PTH 个	PTH ↓
Primary hyperparathyroidism	Malignancy
Familial hypocalciuric hypercalcaemia	Granulomas
	Endocrine causes
	latrogenic

PTH is the first test you will need $\downarrow PO_4^-$ suggests PTH or PTH-like action $\rightarrow \uparrow$ urinary loss

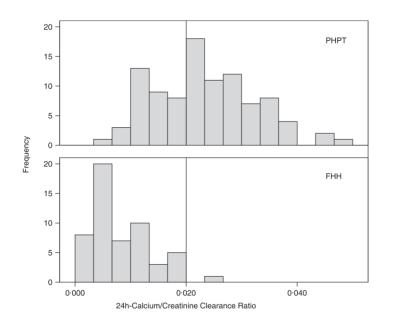
What needs to be done next

- Assess patient for confusion and fluid status
- Obtain
 - U&E, repeat Ca, PTH and Vitamin D
 - TFTs and cortisol
 - Amylase
 - 24h urine collection for Ca and Cr


Primary hyperparathyroidism

- 1/1000 prevalence
- 80% single gland, 20% multiple gland
- Familial
 - c. 1% cases
 - Think of this with young patients
 - Menin MEN-1 and familial isolated HPT
 - Ret MEN-2
 - Hrpt2 HPT-jaw tumour syndrome, associated with PT carcinoma

Familial Hypocalciuric Hypercalcaemia


- Most commonly due to heterozygous loss of function in Ca sensing receptor (CaSR)
- 个reabs urinary Ca

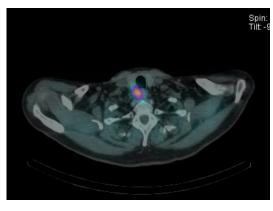
- ≻Asymptomatic 个Ca, 个PTH
- ≻↓Ca in urine

How to distinguish PHPT vs FHH

- Corrected Calcium to Creatinine Ratio
 - = ($U_{Ca} \times S_{Cr}$) \div ($S_{Ca} \times U_{Cr}$)
 - Use 24 h urine collection
 - Make sure units the same (μ mol vs mmol for Cr)

Overlap between PHPT and FHH patients, particularly between 0.01-0.02

If >2% almost certainly PHPT


- If <1% almost certainly FHH
- 1-2% not clear ?send for genetics

Think about screening family's Ca levels

Surgery for PHPT

- Localise and excise
 - USS, sestaMIBI
 - Surgical exploration or selective adenectomy
 - Complications (uncommon)
 - \downarrow PTH, rec laryngeal nerve palsy

• AVOID SURGERY IN FHH

Surgery vs conservative treatment

- Consider surgery if:
 - Wishes to have surgery
 - Symptomatic
 - Has low bone mineral density, kidney stones
- Conservative Rx
 - Bisphosphonates
 - Cinacalcet (calcimimetic, binds CaSR and suppresses PTH secretion)

In this case...

- Admitted as Ca was >3.0 and vomiting
- Given saline to lower Ca
- Elevated PTH 7.6 pmol/L, CCCR 2.3%

Therefore PHPT

≻ What next?

PHPT in pregnancy

- Uncommon
- Effects on pregnancy
 - Nephrolithiasis, pancreatitis
 - Hyperemesis gravidarum
 - Pre-eclampsia (25%)
- Fetal effects
 - Fetal IUGR, low birth weight
 - Pre-term delivery
 - Postpartum neonatal hypoCa

Dealing with PHPT in pregnancy

- Refer to experienced Obstetric Medicine centre
- Ultrasound localisation of PT adenomas
 - Sometimes MRI in 2nd trimester
 - sestaMIBI, CT etc involves radiation...
- IV fluids/antiemetics if hyperemetic
- Surgery in 2nd trimester
 - Patient and baby weathered well
 - Safe delivery
- MEN-1 screening required

Case 2

- 55 year old man
- Tired
- Corrected Ca 2.34
- PTH 7.6 pmol/L (upper limit normal 6.4)

What do you need to do?

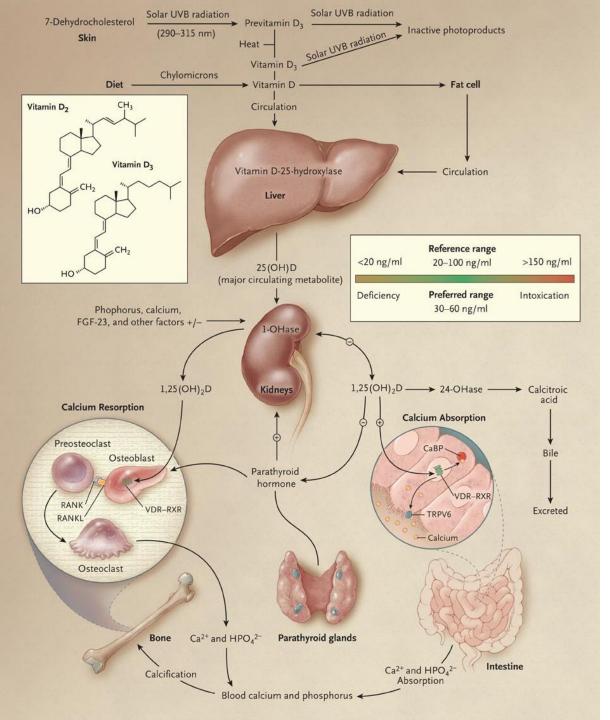
Secondary hyperparathyroidism

• Normal Ca, elevated PTH

- Vitamin D deficiency
- Chronic kidney disease
- Familial hypocalciuric hypercalcaemia

Does not always present with hypercalcaemia

• Mild primary hyperparathyroidism


Further tests

- Cr 65 μmol/L
- Vitamin D 15 nmol/L
 - Deficient <25 nmol/L
 - Insufficient 25-75 nmol/L
 - Sufficient >75 nmol/L

Vit D Deficiency

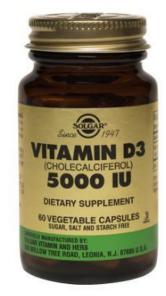
- Children
 - Growth retardation in utero
 - Rickets #, pseudo#, leg bowing
 - Short for age
- Adults
 - Secondary hyperparathyroidism
 - Low BMD \rightarrow osteopenia/osteoporosis
 - Osteomalacia: muscle pain and weakness
 - Increased risk of fracture and falls

Metabolism of Vitamin D

Groups at risk for deficiency

Mechanism	Examples
Reduced exposure to UV	High latitude, sunblock, clothing, institutionalization
Reduced skin synthesis	Melanin pigmentation, aging
Malabsorption	Pancreatic insufficiency, IBD, coeliac disease, bariatric surgery, cholestyramine, orlistat
Sequestration in fat	Obesity
Increased metabolism to calcitroic acid	Rifampicin, Phenytoin, Glucocorticoids, HAART, transplant drugs
Failure to 25-hydroxylate	Severe liver failure
Failure to 1-hydroxylate	CKD and hyperphosphataemia
Loss of Vitamin D in urine	Nephrotic syndrome

When should I check vitamin D?


- Hyperparathyroidism
- Bone disease
 - osteomalacia, osteoporosis, or Paget's disease
- If having treatment where treating vitamin D deficiency is appropriate

- Anti-resorptives, steroids

- If the person has had a fall
- Features of hypocalcaemia
 - muscle cramps, carpopedal spasm, numbness, paraesthesias, tetany, or seizure

Supplements available

- Colecalciferol (D3)
 - Calcium + D3 2 tablets = 400-800 IU
 - 20,000 IU caps (pharmacy)
 - OTC: 400-5000 IU tabs, caps
- Ergocalciferol (D2)
 - IM 300,000–600,000 IU
 - Every 3-6 months

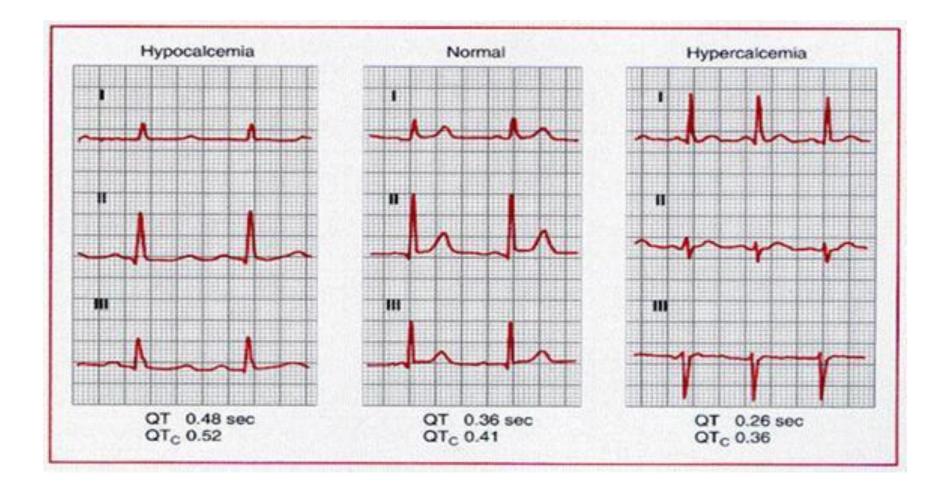
Note D3 >> D2 in potency in terms of ^{250HD}

If vitamin D deficient... (<25 nmol/L)

- Load over 3 months
 - PO D3 (e.g. Dekristol) 20,000 IU weekly
 - IM D2 300,000 IU 2x injections in 3 months
- Then go on to maintenance
 - 1000-2000 IU daily
 - Higher doses considered if accelerated metabolism or obesity
- Check 25OHD, Ca after 3 months
 - Then 6-monthly

If Vitamin D insufficient... (25-75 nmol/L)

- Consider treatment if
 - Osteoporotic/penic or taking anti-resorptive
 - Symptomatic (widespread muscle pain etc)
 - High risk of deficiency
 - Malabsorption
 - Chronic disease (e.g. CKD)
- Tiredness is not a indication
- Maintenance dose: 1000-2000 IU daily


Case 3

- 27 year old man post thyroidectomy
- Corrected Ca 1.72 mmol/L
- Ionised Ca 0.82 mmol/L

Signs and Symptoms

- Asymptomatic
- Musculoskeletal
 - Cramps, paraesthesiae ... tetany, laryngospasm, respiratory depression
 - Chvostek's and Trousseau's signs
- CNS
 - Depression ... seizures, coma
- Cardiovascular
 - Prolonged QTc ... VF, VT ... pulseless electrical activity or asystole
 - Cardiac failure

ECG changes

Emergency guide

- Clinical assessment and ECG
- Check amylase, CK, U&E
- Ionised Ca measurement (if Alb \downarrow)
- If mild Sx and corrected Ca ≥2.0
 - Oral Sandocal-1000 1 tab bd
- If severe Sx and corrected Ca < 2.0 or ECG changes
 - Admission required for IV Ca infusion
- Persistent $\sqrt{Ca} > 48h$

- Sandocal-1000 1 tab bd plus Alfacalcidol 1 μ g od.

Causes overview

↓РТН	PTH resistance	Vit D problems	Ca sequestration
No parathyroids (surgery, autoimmune)	Renal failure	Vit D deficiency	Pancreatitis
Mg deficiency	PseudohypoPTHism	Vit D dep rickets T1 (CYP27B1 defic)	Chelating/ppting agents (EDTA, PO ₄ -)
PTH gene mutations		Vit D dep rickets T2 (VDR mutation)	Bisphosphonates
CaSR gain-of-function			Tumour lysis
			Rhabomyolysis
↓Ca 个PO ₄ ↓PTH	↓ Са 个РО ₄ 个РТН	↓ Cа ↓РО ₄ ↑РТН	↓Са 个РО ₄ 个РТН

Hypoparathyroidism

- latrogenic
 - Surgery to neck
 - Radiation therapy
- Autoimmune hypoparathyroidism
 - Reported also with immunotherapies for cancer
- Genetic causes
 - PTH mutations
 - Gain-of-function of Ca sensing receptor
 - As part of other syndromes (e.g. Di George syndrome)

Treatment of hypoparathyroidism

- Standard treatment involves
 - Activated vitamin D (alfacalcidol or calcitriol)

Ca tablets

- Associated with elevated Ca excretion in urine
 - 31% of patients have renal calcification
 - Higher risk of acquiring CKD
- ➤ Target low-normal Ca levels
 - 2.10-2.30 mmol/L
 - Reduce Ca consumption as low as tolerated

Treatment of hypoparathyroidism

....

• Recombinant PTH (1-84) – Natpara

- Approved in the US, not yet in Europe
- Corrects hypocalcaemia
 - Hypercalciuria still present, so this is still a problem
- Theoretical risk of osteosarcoma
 - Will require monitoring if approved

Summary

- ↑Ca
 - If <3.0 can investigate as outpatient
 - 24h urine collection important to distinguish causes
- ↓Ca
 - ECG important
 - Replace with active vitamin D + Ca
- Vitamin D
 - Only needs to be checked and replaced in certain situations