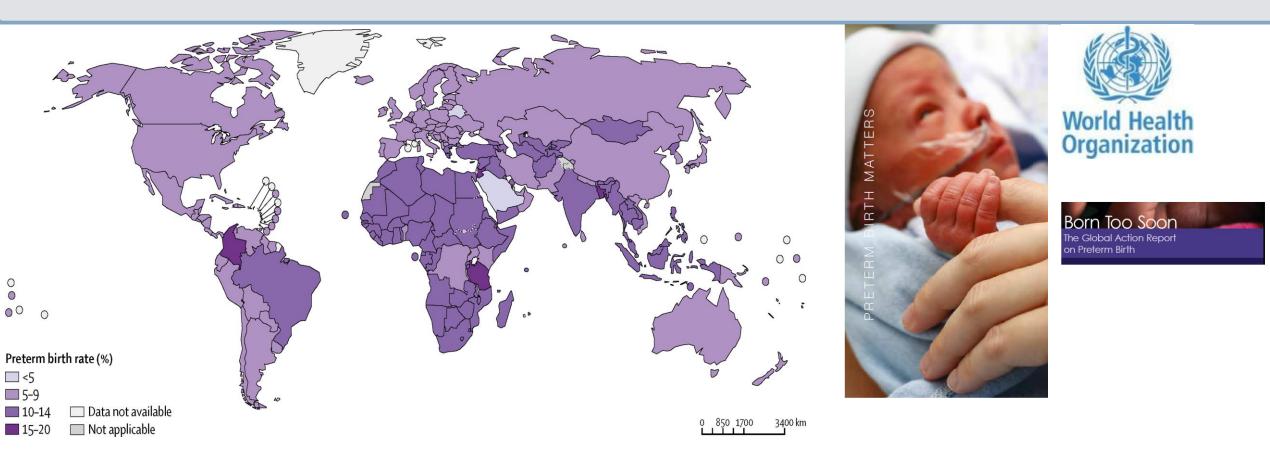
Management of women at high risk of Preterm birth

GP training day 7/10/21

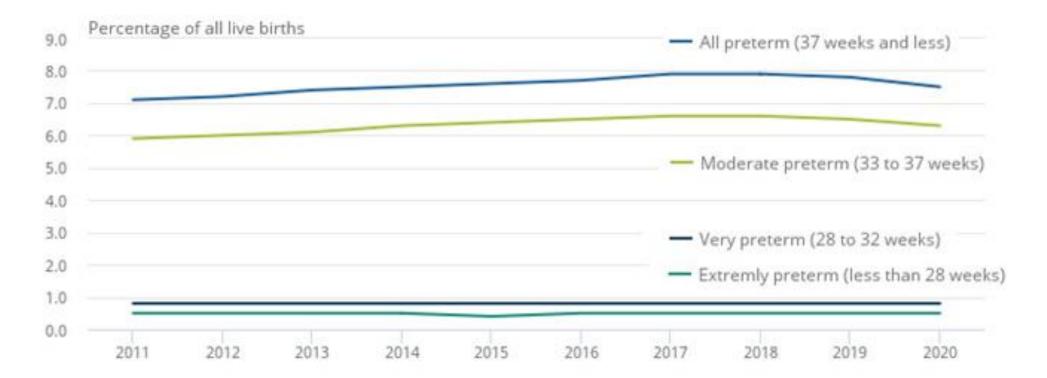
Dr Lynne Sykes BSc MBBS PhD MRCOG


Clinical Senior Lecturer & Consultant Obstetrician, Imperial College London

Content

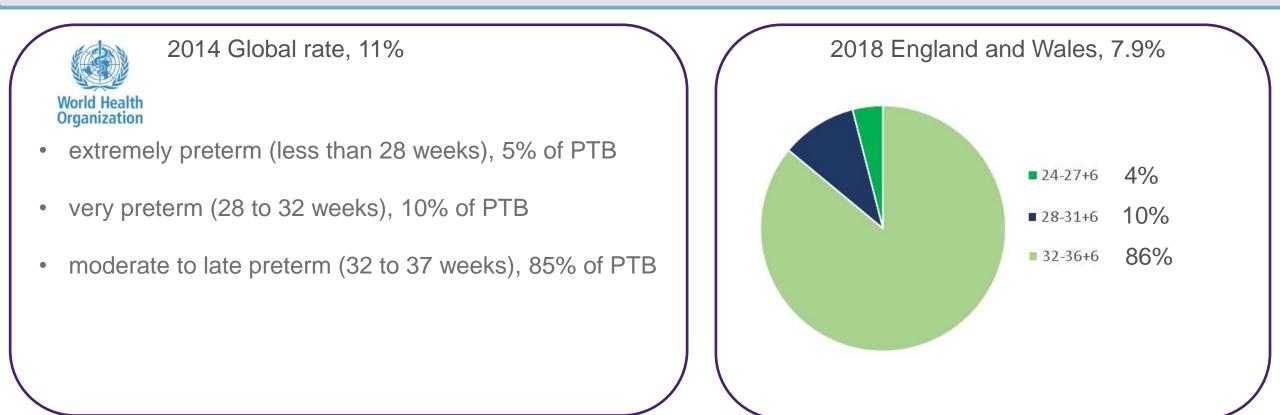
- Who is at high risk
- Prediction
- Prevention
- Preparation

Who is at risk ?



Call to prevent avoidable death:

³⁄₄ could be saved with current cost effective interventions such as warmth, breastfeeding, antibiotics, antenatal steroids


Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling a Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis The Lancet Global Health 2019 7e37-e46DOI: (10.1016/S2214-109X(18)30451-0)

Percentage of live births classified as preterm occurring in England and Wales, 2011 to 2020

Source: Office for National Statistics - Provisional births in England and Wales

Classification of PTB

Preterm birth – UK vision

Department of Health

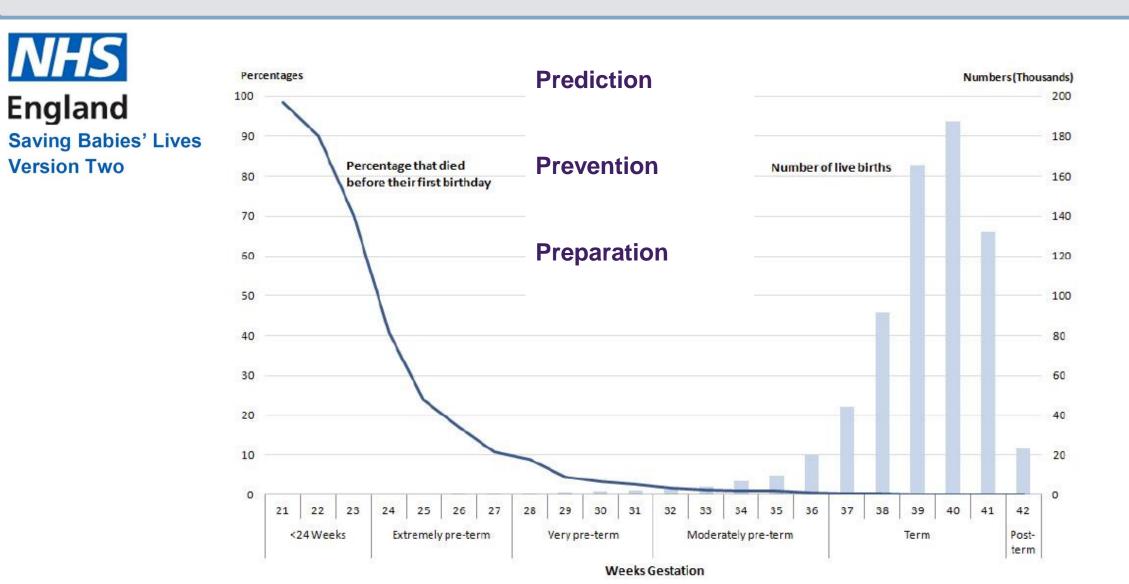
Safer Maternity Care

Next steps towards the national maternity ambition

2016

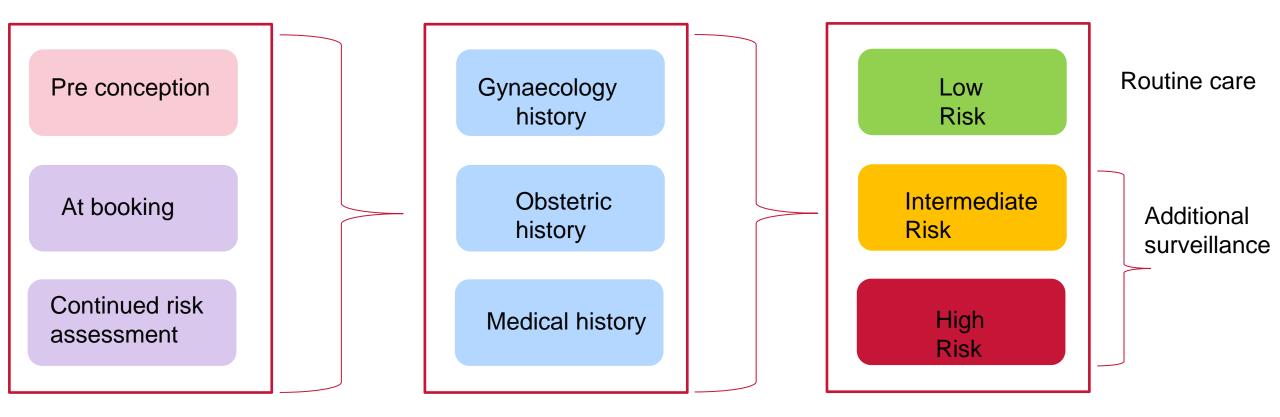
Call to reduce stillbirths, neonatal and maternal deaths by 50% by 2030

Safer Maternity Care


The National Maternity Safety Strategy - Progress and Next Steps

2017 Call to reduce PTB rates from 8% to 6% by 2025

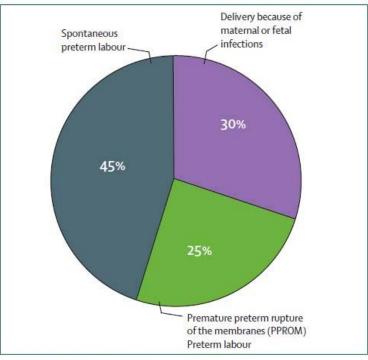
2019 Element 5 is specific to PTB


UK strategy:

PREDICTION OF PRETERM BIRTH

UK strategy: Prediction

Prediction – when and how do we assess risk ?



*Most women who deliver preterm do not have identifiable risk factors

Precursors of preterm birth

Epidemiology and causes of preterm birth

Robert L Goldenberg, Jennifer F Culhane, Jay D Iams, Roberto Romero

Spontaneous PTL ~45% PPROM ~25% latrogenic preterm birth ~30%

Figure 2: Obstetric precursors of preterm birth

Prediction – Clinical history

Gynaecological history

Cervical excisional treatment

Trachelectomy

Mid trimester loss

Multiple ERPC/STOPs

History of uterine anomaly

Obstetric history

Previous full dilation caesarean section

Previous Preterm birth

Previous PPROM

Previous Pre eclampsia

Obstetric Cholestasis

SGA

Current: PPROM/TPTL/incidental finding of short/open cervix

Medical history

Chronic hypertension

Diabetes

Inflammatory bowel disease

Connective tissue disease/SLE

Prediction – Clinical history

Intermediate risk

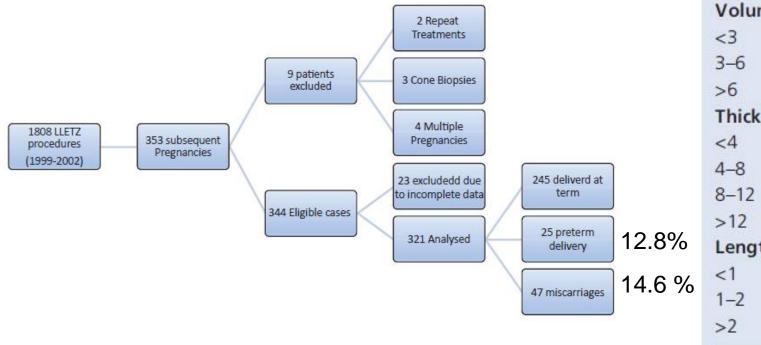
- Previous delivery by caesarean section at full dilatation.
- History of significant cervical excisional event i.e. LLETZ where >10mm depth removed, or >1 LLETZ procedure carried out or cone biopsy (knife or laser, typically carried out under general anaesthetic).

High risk

- Previous preterm birth or mid-trimester loss (16 to 34 weeks gestation).
- Previous preterm prelabour rupture of membranes <34/40.
- Previous use of cervical cerclage.
- Known uterine variant (i.e. unicornuate, bicornuate uterus or uterine septum).
- Intrauterine adhesions (Ashermann's syndrome).
- History of trachelectomy (for cervical cancer).

England

Saving Babies' Lives Version Two

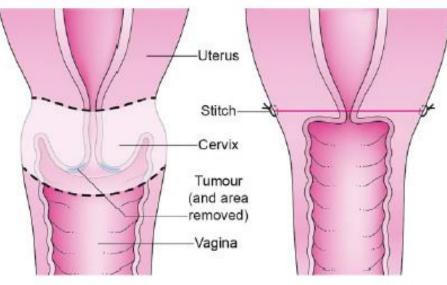

Prediction – Cervical excisional treatment

The thickness and volume of LLETZ specimens can predict the relative risk of pregnancy-related morbidity

S Khalid,^a E Dimitriou,^a R Conroy,^b E Paraskevaidis,^c M Kyrgiou,^d C Harrity,^a M Arbyn,^e W Prendiville^a

Table 2. Numbers (and percentages) of women delivering at term,at <37 weeks of gestation or with miscarriage at <24 weeks of</td>gestation, based on measurement of LLETZ specimen

<u>4</u>	Miscarriage no. (%)	Pre-term labour no. (%)	Term delivery no. (%)
Volume	e (cm ³)		
<3	33 (17.1)	14 (7.3)	145 (75.6)
3-6	8 (9.9)	5 (6.2)	68 (83.9)
>6	6 (12.5)	10 (20.8)	32 (66.7)
Thickne	ess (mm)		
<4	14 (21.3)	3 (4.5)	49 (74.2)
4-8	20 (12.4)	14 (8.7)	127 (78.9)
8-12	10 (13.7)	7 (9.6)	56 (76.7)
>12	3 (14.3)	5 (23.8)	13 (61.9)
Length	(cm)		
<1	5 (19.2)	2 (7.7)	19 (73.1)
1-2	33 (15.6)	17 (8.0)	162 (76.4)
>2	9 (10.8)	10 (12.1)	64 (77.1)



Prediction – Trachelectomy

D0: 10.1111/tog.12415 2017;19:299-305 Review
The Obstetrician & Gynaecologist
http://onlinetog.org

The management of pregnancy after trachelectomy for early cervical cancer

Anushka Tirlapur мясод мд,^a Fredric Willmott мясод,^b Philippa Lloyd вьс мяс,^c Elly Brockbank мд мясод,^d Arjun Jeyarajah ма ғясод,^d Kalpana Rao мд ғясод^e,*

1st trimester loss 16% 2nd trimester loss 7% PTB 45% PPROM usually in third trimester

D Jo's Cervinal Caneer Trust

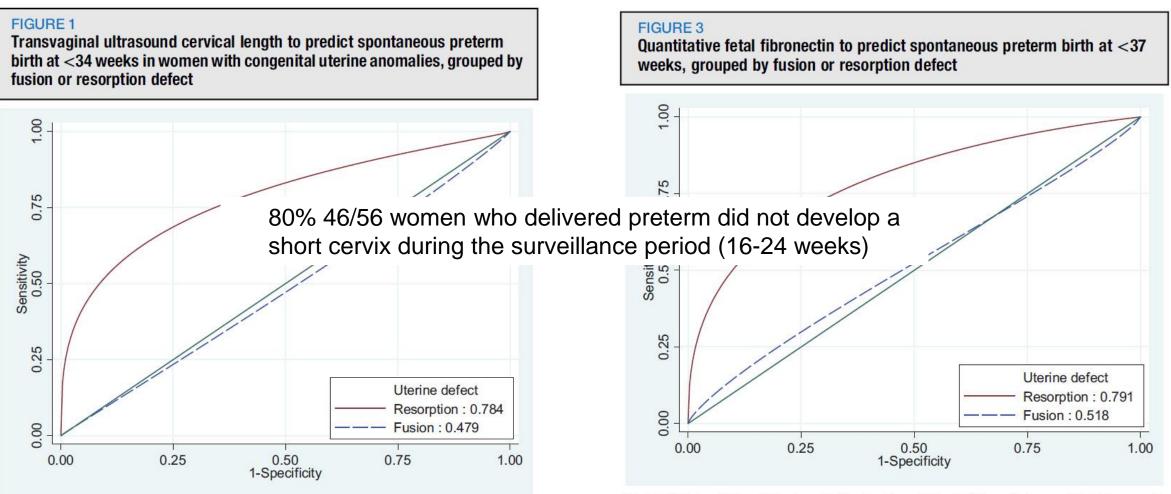
Figure 1. A diagram showing trachelectomy surgery and the position of a permanent suture. Reproduced with permission from Jo's Cervical Cancer Trust (https://www.jostrust.org.uk/).

Prediction – Uterine anomaly

OBSTETRICS

Cervical length and quantitative fetal fibronectin in the prediction of spontaneous preterm birth in asymptomatic women with congenital uterine anomaly

Alexandra E. Ridout, MBBS; Linda A. Ibeto, PhD; Georgia N Ross, MBBS; Joanna R. Cook, PhD; Lynne Sykes, PhD; Anna L. David, PhD; Paul T. Seed, MSc; Rachel M. Tribe, PhD; Phillip R. Bennett, PhD; Vasso Terzidou, PhD; Andrew H. Shennan, MD; Manju Chandiramani, PhD; and collaborators: Richard G. Brown, PhD; Susan Chatfield, MBBS; Dana Sadeh, MBBS


TABLE 1 Spontaneous preterm birth in women with congenital uterine anomalies				Fusion	sion Resorption			
Pregnancy outcome	Cohort (n =319)	Unicornuate $(n = 27)$	Didelphys $(n = 34)$	$\frac{\text{Bicornuate}}{(n = 189)}$	Septate $(n = 56)$	Arcuate $(n = 13)$		
sPTB at <37 wk	17.6% (56)	25.9% (7)	20.6% (7)	16.4% (31)	12.5% (7)	30.8% (4)		
sPTB at <34 wk	7.2% (23)	3.7% (1)	8.8% (3)	6.3% (12)	5.4% (3)	30.8% (4)		
sPTB at <37 wk when CUA is the sole risk factor	12.8% (33/257)	26.9% (7/26)	20.0% (6/30)	9.1% (13/143)	12.5% (6/48)	10% (1/10)		

Check for updates

CUA, congenital uterine anomaly; sPTB, spontaneous preterm birth.

Ridout et al. Preterm birth prediction by cervical length and quantitative fetal fibronectin in congenital uterine anomalies. Am J Obstet Gynecol 2019.

Prediction – Uterine anomaly

Ridout et al. Preterm birth prediction by cervical length and quantitative fetal fibronectin in congenital uterine anomalies. Am J Obstet Gynecol 2019.

Ridout et al. Preterm birth prediction by cervical length and quantitative fetal fibronectin in congenital uterine anomalies. Am J Obstet Gynecol 2019.

Prediction – Previous fully dilated c-section

Published in final edited form as: *Am J Obstet Gynecol.* 2015 March ; 212(3): 360.e1–360.e7. doi:10.1016/j.ajog.2014.09.035.

Does stage of labor at time of cesarean affect risk of subsequent preterm birth?

Lisa D. LEVINE, MD, MSCE^{1,*}, Mary D. SAMMEL, ScD², Adi HIRSHBERG, MD¹, Michal A. ELOVITZ, MD¹, and Sindhu K. SRINIVAS, MD, MSCE¹

887 women	PTB rate <37 w	
721 Vaginal deliveries	7.8%	
129 1 st stage CS	2.3%1	
37 2 nd stage CS	13.5 %	
<u> </u>	P= 0.003	OR 2.4 (NS)

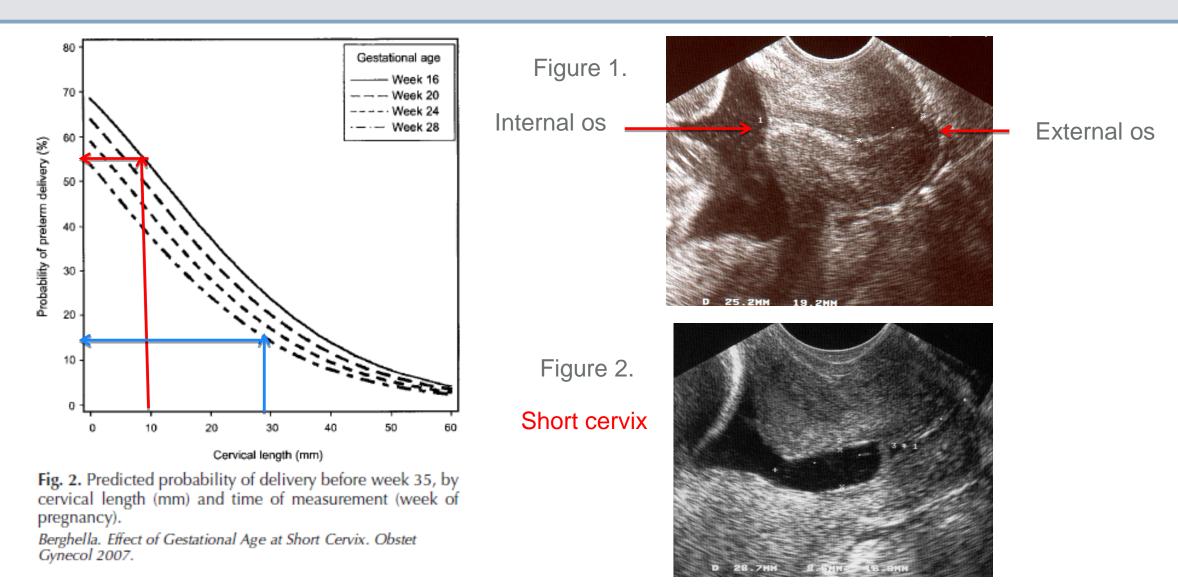
Prediction – Previous fully dilated c-section

OBSTETRICS

Cesarean delivery in the second stage of labor and the risk of subsequent premature birth

Stephen L. Wood, MD; Selphee Tang, BSc; Susan Crawford, MSc

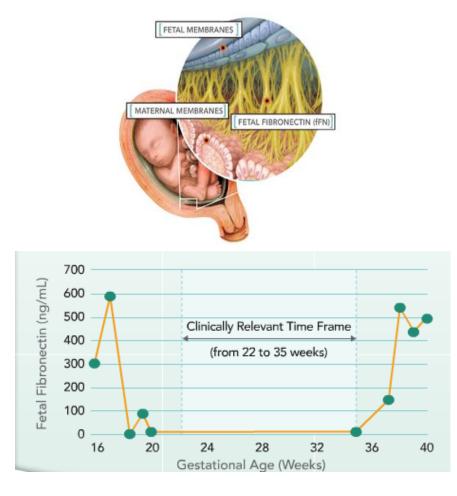
189,021 paired 1st and second births (Canadian perinatal database)


RR of PTB <37w 1.57 (1.43-1.73 95% Cl) RR PTB <32 w 2.12 (1.67-2.68 95% Cl)

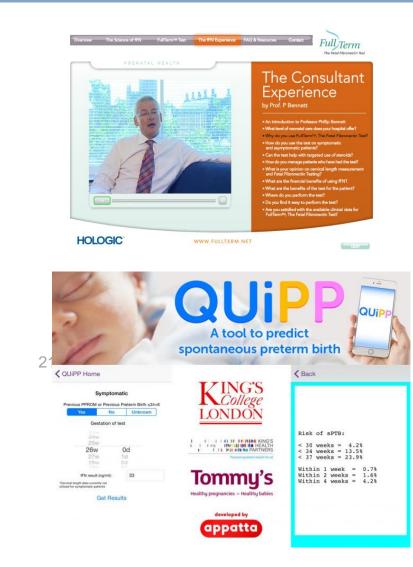
	Delivery method, first birth								
Second birth	Cesarean delivery before labor, $n = 6346$	Cesarean delivery in first stage, $n = 23,072$	Cesarean delivery in second stage, n = 8607	Cesarean delivery unknown stage, n = 6049	Operative vaginal delivery, n = 44,991	Spontaneous vag delivery, n = 99,9			
Gestational age at delivery, wk									
<32	54 (0.9%)	185 (0.8%)	117 (1.4%)	48 (0.8%)	311 (0.7%)	763 (0.8%)			
32-36	269 (4.2%)	1023 (4.4%)	482 (5.6%)	268 (4.4%)	1665 (3.7%)	3732 (3.7%)			
37-42	6023 (94.9%)	21,864 (94.8%)	8008 (93.0%)	5733 (94.8%)	43,015 (95.6%)	95,461 (95.5%)			
Delivery >32 wk	6292 (99.2%)	22,887 (99.2%)	8490 (98.6%)	6001 (99.2%)	44,680 (99.3%)	99,193 (99.2%)			
Spontaneous premature birth <32 wk	24 (0.4%)	99 (0.4%)	80 (0.9%)	23 (0.4%)	187 (0.4%)	439 (0.4%)			
ndicated premature birth <32 wk	30 (0.5%)	86 (0.4%)	37 (0.4%)	25 (0.4%)	124 (0.3%)	324 (0.3%)			
Delivery >37 wk	6023 (94.9%)	21,864 (94.8%)	8008 (93.0%)	5733 (94.8%)	43,015 (95.6%)	95,461 (95.5%)			
Spontaneous premature birth <37 wk	171 (2.7%)	728 (3.2%)	457 (5.3%)	185 (3.1%)	1470 (3.3%)	3373 (3.4%)			
ndicated premature birth <37 wk	152 (2.4%)	480 (2.1%)	142 (1.7%)	131 (2.2%)	506 (1.1%)	1122 (1.1%)			
Spontaneous premature birth <32 wk, RR (95% CI)	0.86 (0.57-1.30)	0.98 (0.79-1.21)	2.12 (1.67-2.68)	0.87 (0.57-1.32)	0.95 (0.80-1.12)	Reference			
Spontaneous premature birth <37 wk, RR (95% CI)	0.80 (0.69-0.93)	0.94 (0.86-1.01)	1.57 (1.43-1.73)	0.91 (0.78-1.05)	0.97 (0.91-1.03)	Reference			
ive birth, no neonatal death	6260 (99.59%)	22,705 (99.54%)	8470 (99.48%)	5940 (99.53%)	44,411 (99.64%)	98,485 (99.64%)			
Antepartum stillbirth	21 (0.33%)	67 (0.29%)	11 (0.13%)	17 (0.28%)	94 (0.21%)	205 (0.21%)			
ntrapartum stillbirth	0 (0.00%)	13 (0.06%)	9 (0.11%)	2 (0.03%)	18 (0.04%)	42 (0.04%)			
leonatal death, excluding congenital anomalies	5 (0.08%)	26 (0.11%)	24 (0.28%)	9 (0.15%)	48 (0.11%)	109 (0.11%)			
tillbirth or neonatal death, RR (95% CI)	1.15 (0.77, 1.71)	1.29 (1.04, 1.60)	1.44 (1.05, 1.96)	1.30 (0.89, 1.91)	1.00 (0.83, 1.20)	Reference			

Prediction – Previous Mid trimester loss and Preterm birth

Prediction tools- Cervical Length


Prediction tools- Fetal fibronectin

- Adhesive glycoprotein Positive if > 50ng/ml NPV 97-99%
- PPV 25-50%
- LR of del <34/40
 - 3.99 for + result

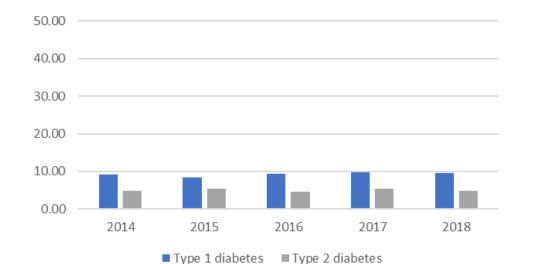

• 0.38 for – result (H Honest BMJ 2002)

Evaluation of Fetal Fibronectin with a <u>Q</u>uantitative Instrument for the <u>P</u>rediction of <u>P</u>reterm birth

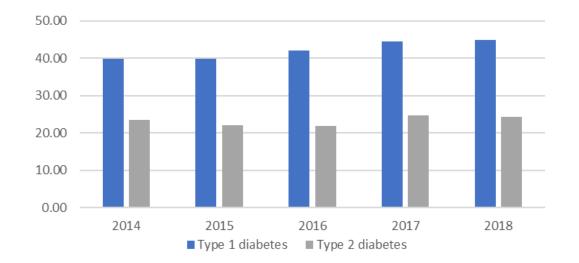
Prediction – Medical history

Chronic hypertension – 5 fold higher risk 25% risk of developing PET

Diabetes 3.5 fold higher risk


Inflammatory bowel disease – 2 fold increased risk

Prediction – Medical history


National Pregnancy in Diabetes (NPID) Audit Report 2018

- Early preterm births between 2014 and 2018 9% for Type 1 diabetes and around 5% for Type 2 diabetes
- The percentage of preterm births to women with Type 1 diabetes (including early preterm) has increased significantly between 2014 and 2018 from 40% to 45%.
- This has not been mirrored in births to women with Type 2 diabetes

Figure 23: Percentage of live singleton births which are before 34 weeks' gestation, England and Wales, 2014-2018

Figure 24: Percentage of live singleton births which are before 37 weeks' gestation, England and Wales, 2014-2018

PREVENTION OF PRETERM BIRTH

UK strategy: Prevention

Saving Babies' Lives Version Two

A care bundle for reducing perinatal mortality

- Stop smoking pre conception, at least by 16 weeks
- Aspirin prophylaxis if at risk of preeclampsia/ SGA
- Offer testing for asymptomatic bacteria, treat a positive culture
- Preconception clinics for medical disorders (e.g diabetes, hypertension)
- Assess need and refer to preterm birth prevention clinic if at risk of sPTB

Prevention: Smoking

RESEARCH

Spontaneous preterm birth and small for gestational age infants in women who stop smoking early in pregnancy: prospective cohort study

Lesley M E McCowan, associate professor of obstetrics and gynaecology,¹ Gustaaf A Dekker, professor of obstetrics and gynaecology,⁶ Eliza Chan, research fellow,¹ Alistair Stewart, statistician,² Lucy C Chappell, senior lecturer in maternal and fetal medicine,⁴ Misty Hunter, medical student,¹ Rona Moss-Morris, professor of health psychology,⁵ Robyn A North, professor in obstetric medicine³ On behalf of the SCOPE consortium

Local target to reduce proportion of women who smoke from 4 to 3 %

	Non smokers N=1992	Stopped smokers N=261	Current smokers n=251
sPTB	88 (4.4%)	10 (3.8%)	25 (10%)
SGA	195 (9.8%)	27 (10%)	42 (16.7%)

Prevention: Aspirin

	W ENGLA L of MED	
ESTABLISHED IN 1812	AUGUST 17, 2017	VOL. 377 NO. 7

Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia

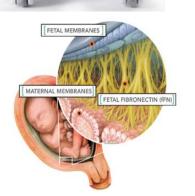
- Double blind, placebo controlled randomised
- 1776 women with singleton pregnancies at high risk of PET 150mg aspirin or placebo from 11-14 weeks till 36 weeks
- Primary outcome PET <37 weeks
- Aspirin n= 798 PET 1.6%
- Placebo n= 822 PET 4.3%

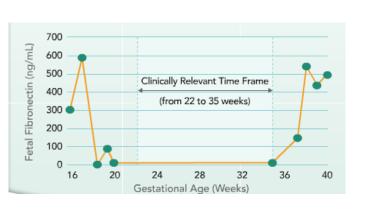
Prevention: Aspirin

Table 1: Clinical risk assessment for preeclampsia as indications for aspirin in pregnancy

Risk level	Risk factors	Recommendation
High	 Hypertensive disease during a previous pregnancy Chronic kidney disease Autoimmune disease such as systemic lupus erythematosus or antiphospholipid syndrome Type 1 or type 2 diabetes Chronic hypertension Placental histology confirming placental dysfunction in a previous pregnancy 	Recommend low dosage aspirin if the woman has ≥1 of these high risk factors
Moderate	 First pregnancy Are 40 years or older at booking Pregnancy interval of more than 10 years Body mass index (BMI) of 35kg/m² or more at first visit Family history of preeclampsia in a first degree relative Multiple pregnancy 	Consider aspirin if the woman has two or more

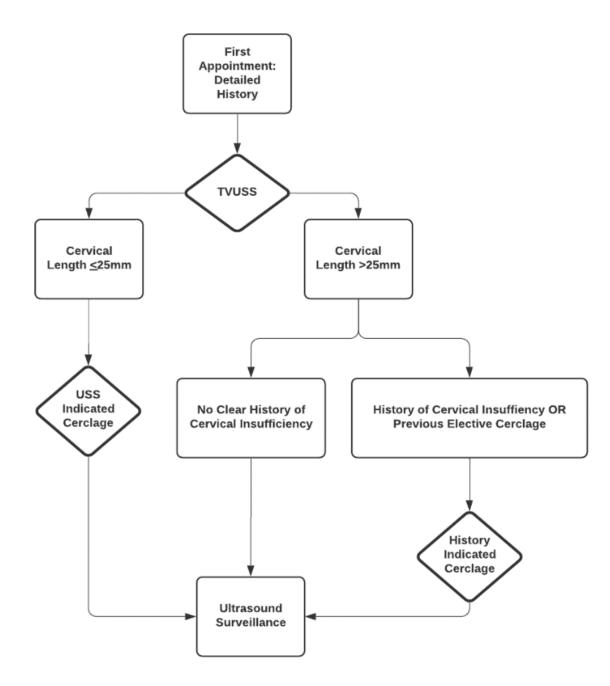
Prevention- Preterm birth prevention clinics




Imperial College Healthcare NHS Trust

Women's Health - Information for patients
Preterm birth prevention clinic

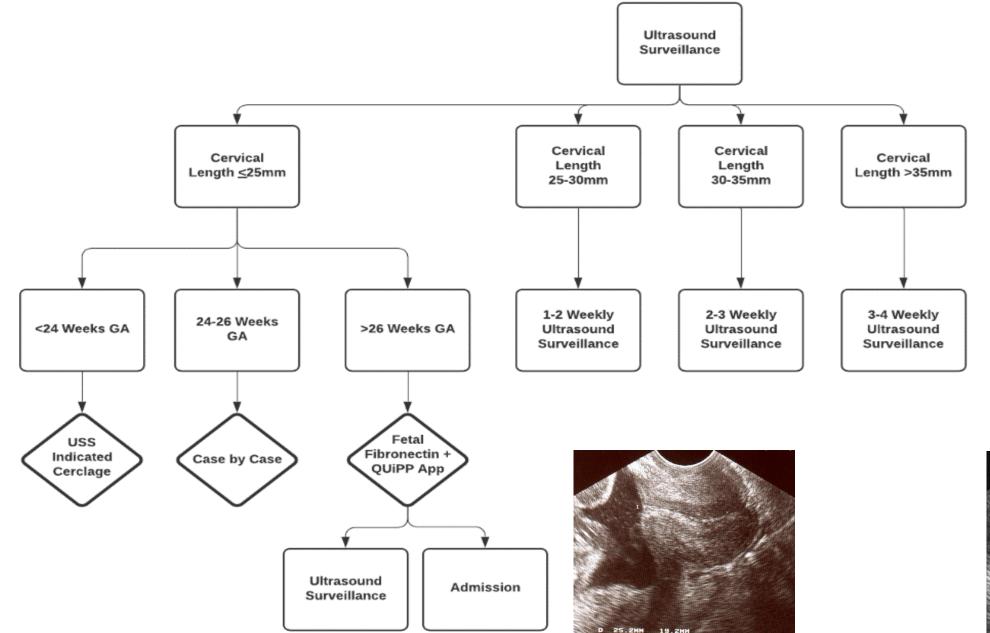
Prediction: Ultrasound surveillance, FFN Prevention: Medical/surgical Interventions, Continuity of care Preparation: Admit/Steroids/Mg SO4



Prediction – Specialist care/ services

Risk Factor	2013	2014	2015	2016	2017	2018	2019	2020*
Previous spontaneous delivery < 37+ 0 weeks						\checkmark	\checkmark	
Previous spontaneous delivery < 34 + 0 weeks	\checkmark							
Spontaneous mid-trimester loss (16+0-23+6 weeks)	\checkmark							
Cervical cerclage in previous pregnancy	\checkmark							
Single LLETZ procedure of >10mm depth, or more than one LLETZ procedure	\checkmark							
Knife cone biopsy of the cervix	\checkmark							
Radical trachelectomy for locally invasive carcinoma of the cervix	\checkmark							
Surgical termination and surgical management of miscarriage beyond 16 weeks	\checkmark							
Previous Full Dilation Caesarean Section					\checkmark	\checkmark	\checkmark	\checkmark
Known Congenital Uterine Abnormality	\checkmark							
Diagnosis of Mixed Connective Tissue Disorders	\checkmark							

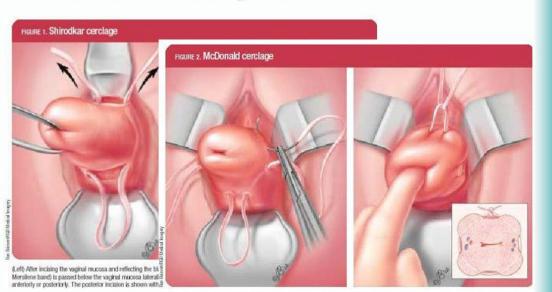
*Referral criteria was modified and reduced in 2020 due to the effects of the COVID-19 Pandemic


Imperial College Healthcare NHS Trust

Women's Health - Information for patients

Preterm birth prevention clinic

Cervical Length and risk of adverse outcome



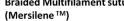
Je

Sykes et al, unpublished work

Intervention: Cervical cerclage

4.ettp Placement of a purse-string strute around the cavik. No dissection of the vaginal muccas is required. (Fight) The stitch is secured anteriority and a fingerity is placed gently into the external us to confirm that the cervical os is closed. The insert shows a cororal section through the cervic and the insert shows a cororal section through the cervic and the cervice of the cervic and the insert shows a cororal section through the cervic and the insert shows a cororal section through the cervic and the cervic and the insert shows a cororal section through the cervic and the insert shows a cororal section through the cervic and the cervic and the insert shows a cororal section through the cervic and the cervic and the insert shows a cororal section through the cervic and the cervic and the insert shows a cororal section through the cervic and the cervic an

OSNABRUCK ®


 Suture material Monofilament vs braided Nylon vs Mersilene

80% of surgeons use mersilene (braided) NOT evidence based

Intervention: Cervical cerclage – Does it work?

b

a Elective Cerclage

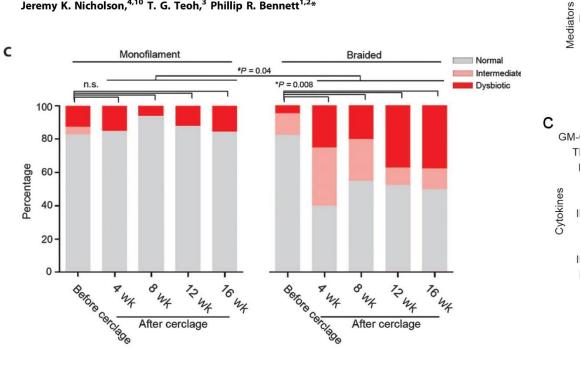
Emergency Cerclage

Sykes et al, unpublished work

weakness in those with previous CT.

Intervention: Cervical cerclage – Does it matter which stitch material?

а

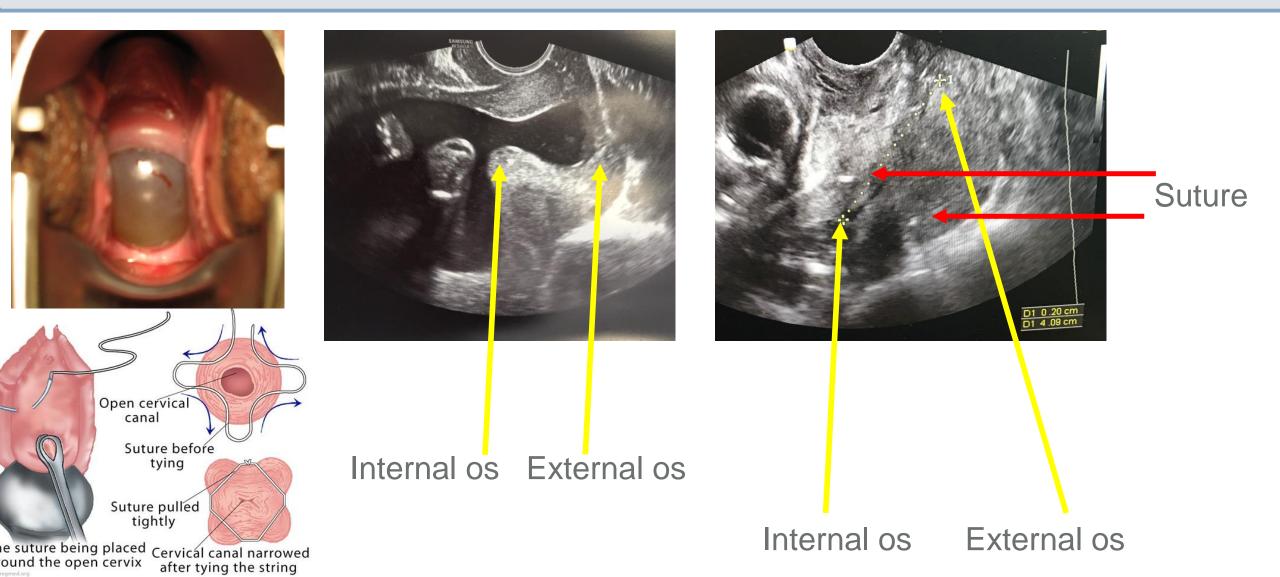

of microbial r

RESEARCH ARTICLE

PREGNANCY

Relationship between vaginal microbial dysbiosis, inflammation, and pregnancy outcomes in cervical cerclage

Lindsay M. Kindinger,^{1,2,3} David A. MacIntyre,¹* Yun S. Lee,¹ Julian R. Marchesi,^{4,5} Ann Smith,⁵ Julie A. K. McDonald,⁴ Vasso Terzidou,^{1,6} Joanna R. Cook,¹ Christoph Lees,^{1,2,7} Fidan Israfil-Bayli,⁸ Yazmin Faiza,⁹ Philip Toozs-Hobson,⁸ Mark Slack,⁹ Stefano Cacciatore,¹ Elaine Holmes,^{4,10} Jeremy K. Nicholson,^{4,10} T. G. Teoh,³ Phillip R. Bennett^{1,2}*


Under review at Nature Communications

.001

.009

038

Intervention: Rescue cervical cerclage

2007

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Progesterone and the Risk of Preterm Birth among Women with a Short Cervix

Eduardo B. Fonseca, M.D., Ebru Celik, M.D., Mauro Parra, M.D., Mandeep Singh, M.D., and Kypros H. Nicolaides, M.D., for the Fetal Medicine Foundation Second Trimester Screening Group*

Ultrasound Obstet Gynecol 2011; 38: 18-31 Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/uog.9017

Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: a multicenter, randomized, double-blind, placebo-controlled trial

S. S. HASSAN^{1,2}, R. ROMERO^{1,3,4}, D. VIDYADHARI⁵, S. FUSEY⁶, J. K. BAXTER⁷, M. KHANDELWAL⁸, J. VIJAYARAGHAVAN⁹, Y. TRIVEDI¹⁰, P. SOMA-PILLAY¹¹, P. SAMBAREY¹², A. DAYAL¹³, V. POTAPOV¹⁴, J. O'BRIEN^{15,16}, V. ASTAKHOV¹⁷, O. YUZKO¹⁸, W. KINZLER¹⁹, B. DATTEL²⁰, H. SEHDEV²¹, L. MAZHEIKA²², D. MANCHULENKO²³, M. T. GERVASI²⁴, L. SULLIVAN²⁵, A. CONDE-AGUDELO¹, J. A. PHILLIPS²⁶ and G. W. CREASY²⁷, for the PREGNANT Trial 24,620 pregnant women Cervical <15 mm 413 women (1.7%) 250 (60.5%) randomised

Delivery < 34 weeks 35% vs 19%

32,091 pregnant women Short cervix 10-20 mm < 35 weeks

Short cervix 10-20 mm	
458 randomised	

Preterm birth

 \leq 33 weeks

 \leq 28 weeks

23%	V	14%
16%	v	9%
10%	V	5%

RDS reduced 7.6% vs 3% p=0.03 Neonatal morbidity and mortality 13.5% vs 7.7% p=0.04

200mg nocte

THE LANCET

of preterm birth

Contents lists available at ScienceDirect

Best Practice & Research Clinical Obstetrics and Gynaecology

journal homepage: www.elsevier.com/locate/bpobgyn

Vaginal progesterone prophylaxis for preterm birth (the OPPTIMUM study): a multicentre, randomised, double-blind trial

Jane Elizabeth Norman, Neil Marlow, Claudia-Martina Messow, Andrew Shennan, Phillip R Bennett, Steven Thornton, Stephen C Robson Alex McConnachie, Stavros Petrou, Neil J Sebire, Tina Lavender, Sonia Whyte, John Norrie, for the OPPTIMUM study group

Fibronectin positive (>50ng/ml) 22-24 weeks

Previous preterm birth <34 weeks Cervical length <25mm

Obstetric Outcome: Fetal death or delivery <34 weeks

Neonatal Outcome: Death, BPD, ultrasound brain injury

Childhood Outcome: Bayley III at 22 to 26 months

200mg nocte TROGESTAN 100m

Lynne Sykes^{*}, Phillip R. Bennett

Parturition Research Group, Institute of Reproductive and Developmental Biology, Du Cane Road, London, W12 ONN LIK

Efficacy of progesterone for prevention

Evaluating Progestogens for Preventing Preterm birth International Collaborative (EPPPIC): meta-analysis of individual participant data from randomised controlled trials

The EPPPIC Group*

Summarv

11

Background Preterm birth is a global health priority. Using a progestogen during high-risk pregnancy could reduce Lancet 2021 . 397: 1183-94 preterm birth and adverse neonatal outcomes.

This online publication has been corrected. The corrected version

Obstetrics & Gynaecology

Check for

No significant benefit in any primary outcome

No benefit in short cervix

No long term harm

Preterm birth prevention clinic – continuity of care

Cochrane Database of Systematic Reviews

Midwife-led continuity models versus other models of care for childbearing women (Review)

Sandall J, Soltani H, Gates S, Shennan A, Devane D

Continuity of career model improves outcome: 19% less likely to have a miscarriage/mid trimester loss 24% less likely to experience preterm birth

Consistency of midwife /clinical team to look after: Pregnancy Labour Postnatal period

National target of 75% by 2024 for Black/minority ethnic groups/those living in deprived areas

Implementing Better Births: Continuity of Carer

Five Year Forward View

December 2017

Publications Gateway

PREPARATION FOR PRETERM BIRTH

Preparation – optimise outcome

- 1. Optimise timing of delivery
- 2. Optimise place of delivery with neonatal team and cot
- 3. Optimise use of corticosteroids and magnesium sulphate

Preparation – optimise timing of delivery

OG An International Journal of Obstetrics and Gynaecology

Women whose pregnancy is complicated by PPROM after 24⁺⁰ weeks' gestation and who have no contraindications to continuing the pregnancy should be offered expectant management until 37⁺⁰ weeks; timing of birth should be discussed with each woman on an individual basis with careful consideration of patient preference and ongoing clinical assessment. [Grade A]

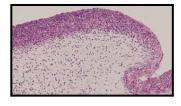
Care of Women Presenting with Suspected Preterm Prelabour Rupture of Membranes from 24⁺⁰ Weeks of Gestation

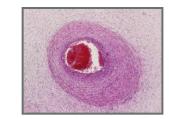
Green-top Guideline No. 73 June 2019 Recommendation comes from the Cochrane review of 3617 Conclusions influenced by late PPROM trials 34-36 weeks

No difference in neonatal sepsis with expectant management Increased RDS and CS with earlier delivery

It is less clear if expectant management to 37+0 is appropriate for women who experience PPROM at earlier gestations

Median latency from PPROM 7 days

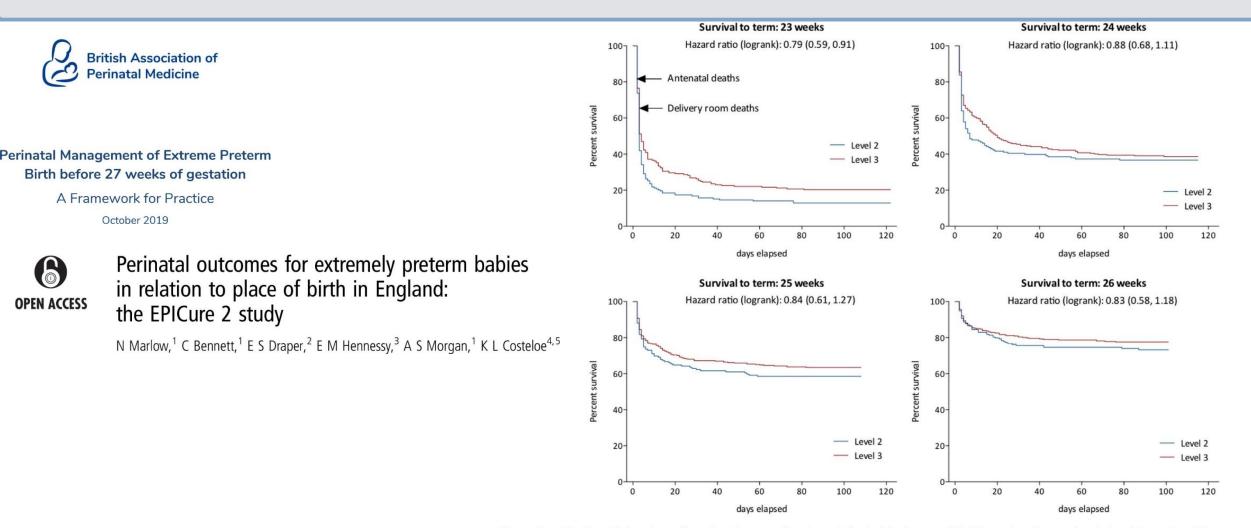

Sykes et al, unpublished work


Clinical Chorioamnionitis:

Uterine tenderness, offensive discharge Tachycardia, Pyrexia Leukocytosis, High CRP

Histological Chorioamnionitis:

Neutrophil invasion of the Fetal membranes and umbilical cord


GA at (weel medi GA at (weel medi

ositive

Preparation – optimise place of delivery

Imperial College

London

Figure 3 Kaplan–Meier plots of survival by gestational week for babies born at 23–26 weeks of gestation in level 3 and level 2 centres in England in 2006. Antenatal deaths are plotted as t=1 and delivery room outcomes care as t=2, with admission to neonatal unit as t=3 and subsequently postnatal age in days to 40 weeks postmenstrual age.

Corticosteroids –

Nice guideline 2015

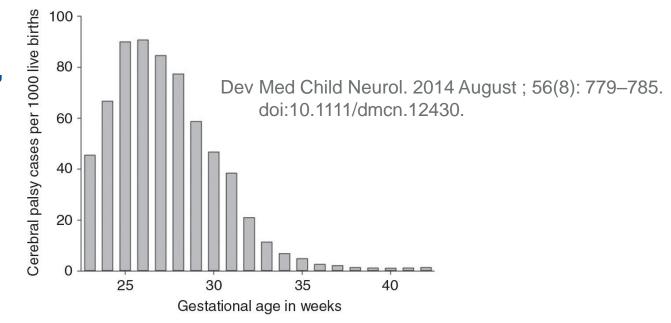
23-23+6 – consider – MDT approach 24-25+6 consider **26+0- 33+6 offer** 34+0- 35+6 consider

Betamethasone 12mg 12 hrs apart

Care with diabetics – sliding scale

Interval	Death	RDS	CVS haemorrhage
<24 hr	RR 0.6 (0.39-0.94)	RR 0.87 (0.66-1.15) <mark>NS</mark>	
<48 hr	RR 0.59 (0.41-0.86)	RR 0.67 (0.49-0.93)	RR 0.26 (0.09-0.75)
1-7 days	RR 0.81 (0.6-1.09) <mark>NS</mark>	0.46 (0.35-0.6)	
>7 days	RR 1.42 (0.91-2.23) <mark>NS</mark>	0.82 (0.53-1.28) <mark>NS</mark>	

Magnesium sulphate for neuroprotection – NICE guideline 2015


Magnesium sulphate:

For every 37 mothers who receive treatment 1 case of Cerebral Palsy is prevented (Crowther, 2018) Cost: £1

24+0- 29+6 in established labour or having planned delivery within 24 hours *consider in women 30-33+6

4g loading dose over 15 mins

- 1g/hr till birth or for 24 hours, minimum of 4-6 hours prior to delivery
- Monitor mother of magnesium toxicity : UO/RR/Reflexes
- CI: Myasthenia gravis/urgent del Warn of flushing!

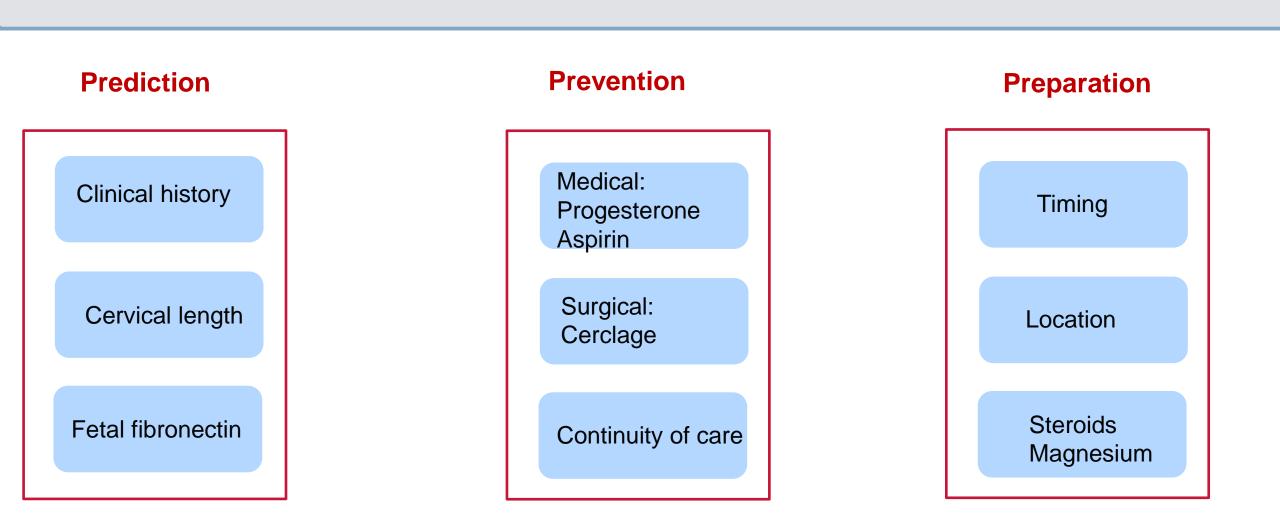
	Magnes	Magnesium C		Control		Risk Ratio			Risk Ratio				
Study	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	1	M-H, Fi	ixed, 9	95% CI		
MagNet (24)	3	85	3	80	2.0%	0.94 [0.20, 4.53]	2002	-		-			
ActoMgSO4 (25)	36	629	42	626	27.5%	0.85 [0.55, 1.31]	2003				6		
Magpie (26)	2	798	5	795	3.3%	0.40 [0.08, 2.05]	2006	•	2.00	+			
PreMag (27)	22	352	30	336	20.1%	0.70 [0.41, 1.19]	2007						
BEAM (28)	41	1188	74	1256	47.1%	0.59 [0.40, 0.85]	2008		-	-			
Total (95% CI)		3052		3093	100.0%	0.68 [0.54, 0.87]			•	•			
Total events	104		154										
Heterogeneity: Chi ² :	= 2.26, df = 4	4 (P = 0	.69); I ² = (0%				+			<u> </u>	<u> </u>	
Test for overall effec	t: Z = 3.08 (F	P = 0.00	2)				F	0.2 avours n	0.5 nagnesium	י Fa	Z avours con	5 ntrol	

Archives Dis Child Fetal Neonatal 2015; 100: F553-F557.

Tocolytics – NICE guideline 2015

Indication:

- Suspected or diagnosed labour
- To obtain benefit from steroids
- To obtain time to transfer to tertiary unit


CI: fetal or maternal compromise, bleeding, infection

1st line: Nifedipine (Cochrane review 2014 more effective at delaying PTB<48hrs compared to no tocolytic) 20mg SR to start

- 10-20mg every 6 hours for 48 hrs
- Max dose 60mg/day
- SE: HTN/ tachycardia/palpitations/flushing/headaches

2nd line: Atosiban (if hypotension, cardiac disease, hepatic dysfunction, multiple pregnancies) Loading dose 6.75mg over 1 min, 18mg/hr for 3 hours, 6mg/hr for 21 hrs

Thank you !

Preterm Prevention Team

Prof Phil Bennett

tt Dr Vasso Terzidou

u Prof TG Teoh

Rachel, Maria, Malko

Dr Erna Bayar

Dr Katie Mountain

Sara

