

Welcome to our AGM 2014/15

- Please help yourself to refreshments
- If you have any questions please speak to a member of staff

Please take a seat, the AGM is about to begin

Welcome Chairman, Sir Richard Sykes

2014/15 review and a look ahead Chief executive, Dr Tracey Batten

We want to

- make our services more accessible
- continuously improve safety and clinical outcomes
- tailor care, support and treatment
- have modern, technology-enabled facilities and infrastructure
- work in a more collaborative way

Key milestones in 2014/15

- improved staff engagement
- began the move to digital patient records
- became lead health provider for community independence service
- expanded community-based specialty services
- made planned changes to emergency and urgent care services
- innovation and translational research
- Care Quality Commission inspection

Hospital standardised mortality ratio

In April 2015 we had the second lowest HSMR in the Shelford Group.

Cancer care 2-week wait standard

Percentage of patients urgently referred seen in under two weeks

national standard (92 per cent)

A&E 4-hour wait standard

Percentage of patients assessed, treated, admitted or discharged within four hours – national standard (95 per cent)

Referral to treatment – under 18 wks

Percentage of patients on our waiting lists who have waited less than 18 weeks – – national standard (92 per

Looking ahead

- new quality strategy
- implementation of our core strategies clinical, quality and financial – supported by refreshed organisational values and behaviours
- increased involvement of our patients, GPs and other stakeholders

Financial accounts 2014/15 Chief financial officer, Richard Alexander

Format

- headlines for the year
- statement of comprehensive income
- where does the income come from?
- how do we spend it?
- a look ahead

Headlines for the year

- Year-end surplus: £15.4m
- Underlying picture more challenging as includes:
 - £24.4m for additional costs of providing specialist care
- Cash balance: £43.3m
- Capital expenditure: £32.9m
- Savings programme: £39.7m of efficiencies

Maintaining our recovery

Plan vs actual 2012/13 to 2014/15

Statement of comprehensive income

	2012/13 fm	2013/14 £m	2014/15 £m
Revenue from patient care activities	752.7	774.4	795.7
Other operating revenue	218.5	204.9	204.9
Total revenue	971.2	979.3	1000.6
Employee benefits	-522.5	-526.2	-553.4
Other costs*	-417.7	-419.0	-418.0
Operating surplus	31	34.2	29.3
Net financing costs	-1.5	-0.8	-0.4
Surplus for the financial year*	29.5	33.3	28.9
Public dividend capital payable	-21.1	-18.8	-14.4
Adjustment for donated assets	0.6	0.6	0.9
Retained surplus/(deficit) for the year*	9	15.1	15.4

* Excluding impairments

Where does our £1billion income come from? 2014/15

How do we spend our income?

How do we spend our income?

Looking ahead: 2015/16 plan

Financial plan 2015/16	2014/15 actual £m	2015/16 plan	Movement between years £m
Income*	1,001.1	1,027.5	↑ 26.4
Expenditure	985.7	1,046.0	↑ 60.3
Surplus / (Deficit)**	15.4	(18.5)	↓33.9
CIP	39.7	36.1	↓3.6
Сарех	32.9	38.0	↑5.1
Cash	43.3	36.1	↓7.2

*Including investment revenue

**Excluding technical adjustments

Looking ahead: 2015/16 and beyond

- Challenging financial position in 2015/16 and into the future
 - No further funding for additional costs of specialist care
- In 2015/16 we plan to double the investment in repairs and improvements to our aging estate
- Maintaining investment in IT
- Supporting implementation of the clinical strategy

Question time

```
Chaired by:
Chairman, Sir Richard Sykes
```

Panel:

- Chairman, Sir Richard Sykes
- Chief executive, Dr Tracey Batten
- Chief financial officer, Richard Alexander
- Chief operating officer and deputy chief executive, Steve McManus
- Deputy medical director, Dr Julian Redhead Director of nursing, Janice Sigsworth

Regenerating the failing heart: pushing the boundaries of health and health care

Professor Sian Harding Imperial College London

Natural history of heart failure

Why is there a progressive deterioration in contraction of the failing heart? Can we stimulate the remaining muscle safely?

Normal myocyte

Dying myocyte

Ventricular myocytes from failing and non-failing human heart

Change in myocyte contraction is seen in all causes of heart failure – acquired defect

(Davies et al, Circulation 1995)

Restoration of SERCA2a speeds contraction and relaxation in human myocytes

It has not been possible to develop a drug to stimulate SERCA Strategy – use SERCA gene therapy to improve cardiac contraction

Viral vectors in registered clinical gene therapy trials

Cardiac gene therapy adeno-associated viral vectors

- No disease associated with infection
- Safety in humans has been shown
 - haemophilia gene therapy trials
- Long lasting gene expression 9 years from a single injection
- Can target the heart
- Safe with immunosuppression good for future transplants

SERCA2a gene therapy clinical trials

Patients with moderate to severe heart failure have one injection of adenoassociated virus with SERCA2a into blood vessels of the heart, with an overnight stay in hospital.

CUPID

Pilot study, 39 patients, 3 years – safety and some evidence of efficacy.

• SERCA-LVAD

Imperial-sponsored study, 24 patients, to provide information on the amount of gene delivery to tissue, as well as effect of pre-existing immunity.

- Agent-HF French trial to look at effects on heart size.
- CUPID2

International Multicentre trial, 240 patients, recruitment. Imperial researcher was UK Lead.

CUPID phase 2 SERCA2a gene therapy trial

First 9 patients reported Jaski, J Card Fail. 2009

Full 39 patients, Jessup, Circulation, 2011 Three year follow-up Zsebo, Circ Res 2013

SERCA2a gene therapy clinical trials

Patients with moderate to severe heart failure have one injection of adenoassociated virus with SERCA2a into blood vessels of the heart, with an overnight stay in hospital.

- CUPID Pilot study, 39 patients, 3 years – safety and some evidence of efficacy
- SERCA-LVAD

Imperial-sponsored study, 24 patients, to provide information on the amount of gene delivery to tissue, as well as effect of pre-existing immunity.

CUPID2

International Multicentre trial, 240 patients, recruitment. **Safe but no effect, too little virus.**

What is the next step?

- Increase the concentration of virus
 - Liver trials use 50x more
- Use an indirect way to stimulate SERCA through an interacting protein
 - To overcome the bodies response to reduce SERCA
- Engineer a new type of virus to overcome problems with antibodies
 - Up to 70% of people already have antibodies

Natural history of heart failure

Which stem cells for cardiac repair?

	Skeletal myoblasts	Bone marrow- derived stem cells	Tissue- derived MSCs	Endogenous cardiac progenitors	Embryonic stem cells	Induced pluripotent cells
Immune matching						
Forms true cardiomyocytes						
Large scale proliferation						
Clinical safety						
Ethically neutral						

Bone marrow cells implanted into heart

Results of bone marrow stem cell implantation for heart disease

- Started almost 10 years ago with small safety trials
- Now around 1000 treated and 1000 control patients in many small doubleblind randomised placebo-controlled trials
- Procedure is safe in the short and medium term
- Some benefit, but not very large
- They don't make myocytes

Large trials underway to decide if therapy is useful

Adult stem cells from the heart, expanded and re-injected

Smith, R. R. et al. Circulation 2007;115:896-908

Do heart patients want their own stem cells back?

- One important benefit of receiving your own cells is immune matching
- But bone marrow stem cells from heart patients are less active
- These risk factors reduce your bone marrow stem cell activity

Age Smoking Diabetes High lipids Hypertension Lack of exercise Male gender

• In fact, poor stem cell activity is another risk factor

Are heart patients there because their own stem cells haven't worked?

Vasa Circ Res 2001 89: e1 - e7 Schmidt-Lucke C. Circulation. 2005 111:2981-7

Which stem cells for cardiac repair?

	Skeletal myoblasts	Bone marrow- derived stem cells	Tissue- derived MSCs	Endogenous cardiac progenitors	Embryonic stem cells	Induced pluripotent cells
Immune matching						
Forms true cardiomyocytes						
Large scale proliferation						
Clinical safety						
Ethically neutral						

Differentiation of embryonic stem cells

Cardiac

adult human induced pluripotent cells stem cells patient-specific genotype drugs genetic and in clinical trials cardiovascular pharmaceutical cells screen 1 2 3 4 5 6 0000 в 00 0000000 in vitro 00000000 disease modelling

Calcium transient – optical mapping iPSC-CM

Membrane potential –multielectrode array hESC-CM cluster

Which stem cells for cardiac repair?

	Skeletal myoblasts	Bone marrow- derived stem cells	Tissue- derived MSCs	Endogenous cardiac progenitors	Embryonic stem cells	Induced pluripotent cells
Immune matching						
Forms true cardiomyocytes						
Large scale proliferation						
Clinical safety						
Ethically neutral						

Stem cell therapy for heart failure: first implant of cardiac cells derived from human embryonic stem cells

16.01.2015 - COMMUNIQUÉ

On the 21 October 2014, Professor Philippe Menasché and his team from the cardiovascular surgery service of the Georges Pompidou European Hospital, AP-HP, carried out a transplant of cardiac cells derived from human embryonic stem cells*, according to a method developed by the Department of Cell and Tissue Biotherapies of the Saint-Louis hospital, directed by Professor Jérôme Larghero and through research led by this group within Inserm.

The surgery, coupled with a coronary bypass*, was carried out on a woman of 68 years suffering from severe heart failure. Ten weeks after the intervention, the patient is feeling well, her condition has improved markedly, with no complications having been observed. This promising advance was presented this Friday, 16 January 2015 at the XXV European Days Conference of the French Society of Cardiology.

A patch for stem cell delivery to the heart

- Applies cells directly to infarcted area
 - Can be prepared in advance
- Maintains cells in position
- Supports scar to prevent expansion
 - Specialised biomaterials being developed in Imperial

Chen QZ, Bismarck A, Hansen U, Harding SE, Ali NN, Boccaccini AR. (2007) Characterisation of a soft elastomer poly(glycerol sebacate) mechanically designed to match myocardial tissue. Biomaterials, 2007

London's research quarter

Imperial's White City Campus and the Hammersmith Hospital Campus are two poles of a new research quarter for London. The co-location of research, business and healthcare will be a first in the capital, reinforcing its position as a catalyst for scientific development and economic growth.

Imperial's White City Campus will create a culture of research and innovation, electric with ideas. The campus will buzz with exchanges between students, researchers and entrepreneurs; a place where questions are posed and solutions found.

One of the first buildings, the £200 million Research and Translation Hub, will be Imperial West's centrepiece. With space for 1,000 researchers alongside 50 spin-out companies, the Hub will support innovation on an unprecedented scale in London.

Imperial College, NHLI

- Alex Lyon
- Nick Banner
- Andy Morley-Smith
- Gabor Foldes
- Nicola Hellen
- Nazanin Dolatshad
- Thusharika Kodagoda
- Maxime Mioulane
- Mirna Chahine •
- Ljudmila Kolker (and UKSCB) •
- Nadire Ali •
- Cesare Terracciano
- Peter O'Gara

Roger Hajjar – Mt Sinai NY

Chris Denning – Univ. Nottingham

Stephan Amisten – KCL

Thomas Eschenhagen, UKE Hamburg

National Centre for the Replacement, Refinement and Reduction of Animals in Research

Stem Cells for Safer Medicines

Any questions?

Thank you Chairman, Sir Richard Sykes